Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Third in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

Second in our series of problems on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

Fifth in our series of problems on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

Sixth in our series of problems on population dynamics for advanced students.

Look at the calculus behind the simple act of a car going over a step.

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

Formulate and investigate a simple mathematical model for the design of a table mat.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Work in groups to try to create the best approximations to these physical quantities.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

See how the motion of the simple pendulum is not-so-simple after all.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

How do scores on dice and factors of polynomials relate to each other?

Two cyclists, practising on a track, pass each other at the starting line and go at constant speeds... Can you find lap times that are such that the cyclists will meet exactly half way round the. . . .

At what positions and speeds can the bomb be dropped to destroy the dam?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Invent scenarios which would give rise to these probability density functions.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Simple models which help us to investigate how epidemics grow and die out.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.