How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Simple models which help us to investigate how epidemics grow and die out.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Why MUST these statistical statements probably be at least a little bit wrong?

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Formulate and investigate a simple mathematical model for the design of a table mat.

Fifth in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

Second in our series of problems on population dynamics for advanced students.

Third in our series of problems on population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

How do scores on dice and factors of polynomials relate to each other?

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

At what positions and speeds can the bomb be dropped to destroy the dam?

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

A brief video explaining the idea of a mathematical knot.

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?