In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Third in our series of problems on population dynamics for advanced students.

At what positions and speeds can the bomb be dropped to destroy the dam?

Second in our series of problems on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

Why MUST these statistical statements probably be at least a little bit wrong?

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Look at the calculus behind the simple act of a car going over a step.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

Fourth in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Formulate and investigate a simple mathematical model for the design of a table mat.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Simple models which help us to investigate how epidemics grow and die out.

See how the motion of the simple pendulum is not-so-simple after all.

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

The second in a series of articles on visualising and modelling shapes in the history of astronomy.