This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

At what positions and speeds can the bomb be dropped to destroy the dam?

Look at the calculus behind the simple act of a car going over a step.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Invent scenarios which would give rise to these probability density functions.

First in our series of problems on population dynamics for advanced students.

Second in our series of problems on population dynamics for advanced students.

See how the motion of the simple pendulum is not-so-simple after all.

Third in our series of problems on population dynamics for advanced students.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Why MUST these statistical statements probably be at least a little bit wrong?

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Work in groups to try to create the best approximations to these physical quantities.

Fifth in our series of problems on population dynamics for advanced students.

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

Fourth in our series of problems on population dynamics for advanced students.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Simple models which help us to investigate how epidemics grow and die out.

Formulate and investigate a simple mathematical model for the design of a table mat.

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

A brief video explaining the idea of a mathematical knot.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?