This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

At what positions and speeds can the bomb be dropped to destroy the dam?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

Why MUST these statistical statements probably be at least a little bit wrong?

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

Third in our series of problems on population dynamics for advanced students.

Second in our series of problems on population dynamics for advanced students.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

See how the motion of the simple pendulum is not-so-simple after all.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

Work in groups to try to create the best approximations to these physical quantities.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

Look at the calculus behind the simple act of a car going over a step.

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Fourth in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

Sixth in our series of problems on population dynamics for advanced students.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

A brief video explaining the idea of a mathematical knot.