This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

An article which gives an account of some properties of magic squares.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

An account of some magic squares and their properties and and how to construct them for yourself.

Beautiful mathematics. Two 18 year old students gave eight different proofs of one result then generalised it from the 3 by 1 case to the n by 1 case and proved the general result.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you describe this route to infinity? Where will the arrows take you next?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

Equal touching circles have centres on a line. From a point of this line on a circle, a tangent is drawn to the farthest circle. Find the lengths of chords where the line cuts the other circles.

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

To avoid losing think of another very well known game where the patterns of play are similar.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.