Search by Topic

Resources tagged with Generalising similar to Weekly Challenge 45: Integral Arranging:

Filter by: Content type:
Stage:
Challenge level:

Fractional Calculus II

Stage: 5

Here explore some ideas of how the definitions and methods of calculus change if you integrate or differentiate n times when n is not a whole number.

Fractional Calculus I

Stage: 5

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Ball Bearings

Stage: 5 Challenge Level:

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

Chocolate 2010

Stage: 4 Challenge Level:

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Equilateral Areas

Stage: 4 Challenge Level:

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Of All the Areas

Stage: 4 Challenge Level:

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Sum the Series

Stage: 5

This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

Magic Squares

Stage: 4 and 5

An account of some magic squares and their properties and and how to construct them for yourself.

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Areas of Parallelograms

Stage: 4 Challenge Level:

Can you find the area of a parallelogram defined by two vectors?

Winning Lines

Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Pentanim

Stage: 2, 3 and 4 Challenge Level:

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

One, Three, Five, Seven

Stage: 3 and 4 Challenge Level:

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Nim

Stage: 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Arithmagons

Stage: 4 Challenge Level:

Can you find the values at the vertices when you know the values on the edges?

Nim-like Games

Stage: 2, 3 and 4 Challenge Level:

A collection of games on the NIM theme

Integral Sandwich

Stage: 5 Challenge Level:

Generalise this inequality involving integrals.

Gnomon Dimensions

Stage: 4 Challenge Level:

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Plus Minus

Stage: 4 Challenge Level:

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Generating Triples

Stage: 4 Challenge Level:

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Overarch 2

Stage: 5 Challenge Level:

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

Generally Geometric

Stage: 5 Challenge Level:

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

Steel Cables

Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Nim-interactive

Stage: 3 and 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Jam

Stage: 4 Challenge Level:

A game for 2 players

Maximum Scattering

Stage: 5 Challenge Level:

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

Sums of Pairs

Stage: 3 and 4 Challenge Level:

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Pair Products

Stage: 4 Challenge Level:

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Multiplication Square

Stage: 4 Challenge Level:

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Partly Painted Cube

Stage: 4 Challenge Level:

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Multiplication Arithmagons

Stage: 4 Challenge Level:

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Irrational Arithmagons

Stage: 5 Challenge Level:

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

Interpolating Polynomials

Stage: 5 Challenge Level:

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Mystic Rose

Stage: 4 Challenge Level:

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level:

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Cyclic Triangles

Stage: 5 Challenge Level:

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Pareq Calc

Stage: 4 Challenge Level:

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Harmonic Triangle

Stage: 4 Challenge Level:

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Take Three from Five

Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Squaring the Circle and Circling the Square

Stage: 4 Challenge Level:

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Rational Roots

Stage: 5 Challenge Level:

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Shape and Territory

Stage: 5 Challenge Level:

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

Fibonacci Factors

Stage: 5 Challenge Level:

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

Beelines

Stage: 4 Challenge Level:

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

Polycircles

Stage: 4 Challenge Level:

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Incircles

Stage: 5 Challenge Level:

The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?