# Search by Topic

#### Resources tagged with Generalising similar to Thebault's Theorem:

Filter by: Content type:
Stage:
Challenge level:

### There are 67 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

### Polycircles

##### Stage: 4 Challenge Level:

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

### Attractive Tablecloths

##### Stage: 4 Challenge Level:

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

### Sliding Puzzle

##### Stage: 1, 2, 3 and 4 Challenge Level:

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

### Jam

##### Stage: 4 Challenge Level:

To avoid losing think of another very well known game where the patterns of play are similar.

### In a Spin

##### Stage: 4 Challenge Level:

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

### Cyclic Triangles

##### Stage: 5 Challenge Level:

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

### Nim-interactive

##### Stage: 3 and 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

### One, Three, Five, Seven

##### Stage: 3 and 4 Challenge Level:

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

### Loopy

##### Stage: 4 Challenge Level:

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

### Pentanim

##### Stage: 2, 3 and 4 Challenge Level:

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

### Fibonacci Factors

##### Stage: 5 Challenge Level:

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

### What's Possible?

##### Stage: 4 Challenge Level:

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

### Winning Lines

##### Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

### Multiplication Arithmagons

##### Stage: 4 Challenge Level:

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

### Irrational Arithmagons

##### Stage: 5 Challenge Level:

Can you work out the irrational numbers that belong in the circles to make the multiplication arithmagon correct?

### Nim-like Games

##### Stage: 2, 3 and 4 Challenge Level:

A collection of games on the NIM theme

### Nim

##### Stage: 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

### Games Related to Nim

##### Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

### Jam

##### Stage: 4 Challenge Level:

A game for 2 players

### Pareq Calc

##### Stage: 4 Challenge Level:

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

### Why Stop at Three by One

##### Stage: 5

Beautiful mathematics. Two 18 year old students gave eight different proofs of one result then generalised it from the 3 by 1 case to the n by 1 case and proved the general result.

### Janine's Conjecture

##### Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

### Integral Sandwich

##### Stage: 5 Challenge Level:

Generalise this inequality involving integrals.

### Thank Your Lucky Stars

##### Stage: 4 Challenge Level:

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

### Beelines

##### Stage: 4 Challenge Level:

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

### Absurdity Again

##### Stage: 5 Challenge Level:

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b?

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Building Gnomons

##### Stage: 4 Challenge Level:

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

### Shape and Territory

##### Stage: 5 Challenge Level:

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

### Sums of Pairs

##### Stage: 3 and 4 Challenge Level:

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

### Gnomon Dimensions

##### Stage: 4 Challenge Level:

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

### Can it Be

##### Stage: 5 Challenge Level:

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

### Equilateral Areas

##### Stage: 4 Challenge Level:

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

### Maximum Scattering

##### Stage: 5 Challenge Level:

Your data is a set of positive numbers. What is the maximum value that the standard deviation can take?

### Magic Squares

##### Stage: 4 and 5

An account of some magic squares and their properties and and how to construct them for yourself.

### More Number Pyramids

##### Stage: 3 and 4 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

### Generating Triples

##### Stage: 4 Challenge Level:

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

### Steel Cables

##### Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

### Route to Infinity

##### Stage: 3 and 4 Challenge Level:

Can you describe this route to infinity? Where will the arrows take you next?

### Problem Solving, Using and Applying and Functional Mathematics

##### Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

### Square Pizza

##### Stage: 4 Challenge Level:

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

### Fractional Calculus II

##### Stage: 5

Here explore some ideas of how the definitions and methods of calculus change if you integrate or differentiate n times when n is not a whole number.

### Plus Minus

##### Stage: 4 Challenge Level:

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

### Generally Geometric

##### Stage: 5 Challenge Level:

Generalise the sum of a GP by using derivatives to make the coefficients into powers of the natural numbers.

### Pair Products

##### Stage: 4 Challenge Level:

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

### Fractional Calculus I

##### Stage: 5

You can differentiate and integrate n times but what if n is not a whole number? This generalisation of calculus was introduced and discussed on askNRICH by some school students.

### Sum the Series

##### Stage: 5

This article by Alex Goodwin, age 18 of Madras College, St Andrews describes how to find the sum of 1 + 22 + 333 + 4444 + ... to n terms.

### Rational Roots

##### Stage: 5 Challenge Level:

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

### Semi-square

##### Stage: 4 Challenge Level:

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

### Chord

##### Stage: 5 Challenge Level:

Equal touching circles have centres on a line. From a point of this line on a circle, a tangent is drawn to the farthest circle. Find the lengths of chords where the line cuts the other circles.