List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

It would be nice to have a strategy for disentangling any tangled ropes...

Can you find the values at the vertices when you know the values on the edges?

Explore the effect of reflecting in two parallel mirror lines.

Charlie has moved between countries and the average income of both has increased. How can this be so?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Can you find sets of sloping lines that enclose a square?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Explore the effect of reflecting in two intersecting mirror lines.

It starts quite simple but great opportunities for number discoveries and patterns!

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?