The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Can you find the values at the vertices when you know the values on the edges?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

An account of some magic squares and their properties and and how to construct them for yourself.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

To avoid losing think of another very well known game where the patterns of play are similar.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

An article which gives an account of some properties of magic squares.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you describe this route to infinity? Where will the arrows take you next?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

It starts quite simple but great opportunities for number discoveries and patterns!

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.