Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Can you find the values at the vertices when you know the values on the edges?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

To avoid losing think of another very well known game where the patterns of play are similar.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Can you describe this route to infinity? Where will the arrows take you next?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

It starts quite simple but great opportunities for number discoveries and patterns!

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Can you find sets of sloping lines that enclose a square?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

It would be nice to have a strategy for disentangling any tangled ropes...