Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

An article which gives an account of some properties of magic squares.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Can you find the area of a parallelogram defined by two vectors?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

An account of some magic squares and their properties and and how to construct them for yourself.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Can you describe this route to infinity? Where will the arrows take you next?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?