Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

It would be nice to have a strategy for disentangling any tangled ropes...

An article which gives an account of some properties of magic squares.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Can all unit fractions be written as the sum of two unit fractions?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

An account of some magic squares and their properties and and how to construct them for yourself.

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you find the values at the vertices when you know the values on the edges?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you describe this route to infinity? Where will the arrows take you next?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?