Search by Topic

Resources tagged with Generalising similar to Square LCM:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 122 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Mind Reading

Stage: 3 Challenge Level: Challenge Level:1

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

problem icon

Mini-max

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

problem icon

AP Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

problem icon

Loopy

Stage: 4 Challenge Level: Challenge Level:1

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

problem icon

Great Granddad

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

problem icon

Card Trick 2

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain how this card trick works?

problem icon

Happy Numbers

Stage: 3 Challenge Level: Challenge Level:1

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

problem icon

What's Possible?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

problem icon

Converging Means

Stage: 3 Challenge Level: Challenge Level:1

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

problem icon

Harmonic Triangle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you see how to build a harmonic triangle? Can you work out the next two rows?

problem icon

Plus Minus

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Nim

Stage: 4 Challenge Level: Challenge Level:1

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

Square Pizza

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Winning Lines

Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Take Three from Five

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Sums of Pairs

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Gnomon Dimensions

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Pair Products

Stage: 4 Challenge Level: Challenge Level:1

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Arithmagons

Stage: 4 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

More Number Pyramids

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Multiplication Arithmagons

Stage: 4 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

problem icon

Partly Painted Cube

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

...on the Wall

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Explore the effect of reflecting in two intersecting mirror lines.

problem icon

Generating Triples

Stage: 4 Challenge Level: Challenge Level:1

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

problem icon

Steel Cables

Stage: 4 Challenge Level: Challenge Level:1

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

problem icon

What Numbers Can We Make Now?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?