The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

An article which gives an account of some properties of magic squares.

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

An account of some magic squares and their properties and and how to construct them for yourself.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nÂ² Use the diagram to show that any odd number is the difference of two squares.

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you find the area of a parallelogram defined by two vectors?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Can you find the values at the vertices when you know the values on the edges?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.