# Search by Topic

#### Resources tagged with Generalising similar to Multiple Magic:

Filter by: Content type:
Stage:
Challenge level:

### Plus Minus

##### Stage: 4 Challenge Level:

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

### Pair Products

##### Stage: 4 Challenge Level:

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

### Sums of Pairs

##### Stage: 3 and 4 Challenge Level:

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

### AMGM

##### Stage: 4 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

### What's Possible?

##### Stage: 4 Challenge Level:

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

### Multiplication Square

##### Stage: 4 Challenge Level:

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

### Janine's Conjecture

##### Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

### Areas of Parallelograms

##### Stage: 4 Challenge Level:

Can you find the area of a parallelogram defined by two vectors?

### Happy Numbers

##### Stage: 3 Challenge Level:

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

### Repeaters

##### Stage: 3 Challenge Level:

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

### Mini-max

##### Stage: 3 Challenge Level:

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

##### Stage: 3 Challenge Level:

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

### Nim-interactive

##### Stage: 3 and 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

### Generating Triples

##### Stage: 4 Challenge Level:

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

### Steel Cables

##### Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

### Partitioning Revisited

##### Stage: 3 Challenge Level:

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

### Cubes Within Cubes Revisited

##### Stage: 3 Challenge Level:

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Nim-like Games

##### Stage: 2, 3 and 4 Challenge Level:

A collection of games on the NIM theme

### Nim

##### Stage: 4 Challenge Level:

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

### Three Times Seven

##### Stage: 3 Challenge Level:

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

### Square Pizza

##### Stage: 4 Challenge Level:

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

### Magic Squares

##### Stage: 4 and 5

An account of some magic squares and their properties and and how to construct them for yourself.

### Beelines

##### Stage: 4 Challenge Level:

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

##### Stage: 3 Challenge Level:

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

### Chocolate Maths

##### Stage: 3 Challenge Level:

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

### Intersecting Circles

##### Stage: 3 Challenge Level:

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

### Jam

##### Stage: 4 Challenge Level:

A game for 2 players

### Litov's Mean Value Theorem

##### Stage: 3 Challenge Level:

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

### Take Three from Five

##### Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

### All Tangled Up

##### Stage: 3 Challenge Level:

Can you tangle yourself up and reach any fraction?

### Seven Squares - Group-worthy Task

##### Stage: 3 Challenge Level:

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

### Konigsberg Plus

##### Stage: 3 Challenge Level:

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

### Chess

##### Stage: 3 Challenge Level:

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

### Tourism

##### Stage: 3 Challenge Level:

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

### Picturing Triangle Numbers

##### Stage: 3 Challenge Level:

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

### Dicing with Numbers

##### Stage: 3 Challenge Level:

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

### Special Sums and Products

##### Stage: 3 Challenge Level:

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

### Sum Equals Product

##### Stage: 3 Challenge Level:

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

### Picturing Square Numbers

##### Stage: 3 Challenge Level:

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

### Shear Magic

##### Stage: 3 Challenge Level:

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

### More Twisting and Turning

##### Stage: 3 Challenge Level:

It would be nice to have a strategy for disentangling any tangled ropes...

### Go Forth and Generalise

##### Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

### Painted Cube

##### Stage: 3 Challenge Level:

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

### Winning Lines

##### Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

### Arithmagons

##### Stage: 4 Challenge Level:

Can you find the values at the vertices when you know the values on the edges?

### Multiplication Arithmagons

##### Stage: 4 Challenge Level:

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

### What Numbers Can We Make?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

### Christmas Chocolates

##### Stage: 3 Challenge Level:

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

### Problem Solving, Using and Applying and Functional Mathematics

##### Stage: 1, 2, 3, 4 and 5 Challenge Level:

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.