Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Delight your friends with this cunning trick! Can you explain how it works?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

An account of some magic squares and their properties and and how to construct them for yourself.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Explore the effect of combining enlargements.