To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Delight your friends with this cunning trick! Can you explain how it works?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Can you describe this route to infinity? Where will the arrows take you next?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

It starts quite simple but great opportunities for number discoveries and patterns!

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?