Search by Topic

Resources tagged with Generalising similar to Hallway Borders:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 125 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Semi-square

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Pick's Theorem

Stage: 3 Challenge Level: Challenge Level:1

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

2001 Spatial Oddity

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

problem icon

Areas of Parallelograms

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the area of a parallelogram defined by two vectors?

problem icon

AP Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

problem icon

Dicing with Numbers

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

problem icon

Handshakes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

problem icon

Make 37

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

problem icon

Equilateral Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Who Is the Fairest of Them All?

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the effect of combining enlargements.

problem icon

Frogs

Stage: 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Converging Means

Stage: 3 Challenge Level: Challenge Level:1

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

problem icon

Pareq Calc

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Mini-max

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

problem icon

Sums of Pairs

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

Pair Products

Stage: 4 Challenge Level: Challenge Level:1

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

How Much Can We Spend?

Stage: 3 Challenge Level: Challenge Level:1

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Egyptian Fractions

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

problem icon

Keep it Simple

Stage: 3 Challenge Level: Challenge Level:1

Can all unit fractions be written as the sum of two unit fractions?

problem icon

Cuboid Challenge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Got it for Two

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Got It game for an adult and child. How can you play so that you know you will always win?

problem icon

Steps to the Podium

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It starts quite simple but great opportunities for number discoveries and patterns!

problem icon

Magic Letters

Stage: 3 Challenge Level: Challenge Level:1

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

problem icon

Generating Triples

Stage: 4 Challenge Level: Challenge Level:1

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

Searching for Mean(ing)

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...