It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you find sets of sloping lines that enclose a square?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

It would be nice to have a strategy for disentangling any tangled ropes...

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Can you work out how to win this game of Nim? Does it matter if you go first or second?