The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Delight your friends with this cunning trick! Can you explain how it works?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

To avoid losing think of another very well known game where the patterns of play are similar.

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.