Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

An article which gives an account of some properties of magic squares.

Can you find the area of a parallelogram defined by two vectors?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

An account of some magic squares and their properties and and how to construct them for yourself.

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Can you describe this route to infinity? Where will the arrows take you next?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nÂ² Use the diagram to show that any odd number is the difference of two squares.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

These gnomons appear to have more than a passing connection with the Fibonacci sequence. This problem ask you to investigate some of these connections.

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?