For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Delight your friends with this cunning trick! Can you explain how it works?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you find the values at the vertices when you know the values on the edges?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can you describe this route to infinity? Where will the arrows take you next?

It starts quite simple but great opportunities for number discoveries and patterns!

Can you find sets of sloping lines that enclose a square?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?