# Search by Topic

#### Resources tagged with Generalising similar to Special Numbers:

Filter by: Content type:
Stage:
Challenge level:

### Summing Consecutive Numbers

##### Stage: 3 Challenge Level:

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

### Number Pyramids

##### Stage: 3 Challenge Level:

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

### Consecutive Negative Numbers

##### Stage: 3 Challenge Level:

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

### More Number Pyramids

##### Stage: 3 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

### More Magic Potting Sheds

##### Stage: 3 Challenge Level:

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

### Maths Trails

##### Stage: 2 and 3

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

### Make 37

##### Stage: 2 and 3 Challenge Level:

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

### Have You Got It?

##### Stage: 3 Challenge Level:

Can you explain the strategy for winning this game with any target?

### Pair Products

##### Stage: 4 Challenge Level:

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

### Partitioning Revisited

##### Stage: 3 Challenge Level:

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

### Nim-7

##### Stage: 1, 2 and 3 Challenge Level:

Can you work out how to win this game of Nim? Does it matter if you go first or second?

### Cunning Card Trick

##### Stage: 3 Challenge Level:

Delight your friends with this cunning trick! Can you explain how it works?

### Picturing Triangle Numbers

##### Stage: 3 Challenge Level:

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

### Card Trick 2

##### Stage: 3 Challenge Level:

Can you explain how this card trick works?

### Searching for Mean(ing)

##### Stage: 3 Challenge Level:

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

### Where Can We Visit?

##### Stage: 3 Challenge Level:

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

### Christmas Chocolates

##### Stage: 3 Challenge Level:

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

### How Much Can We Spend?

##### Stage: 3 Challenge Level:

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

### Squares in Rectangles

##### Stage: 3 Challenge Level:

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

### What Numbers Can We Make Now?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

### Litov's Mean Value Theorem

##### Stage: 3 Challenge Level:

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

### Go Forth and Generalise

##### Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

### Pick's Theorem

##### Stage: 3 Challenge Level:

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

### Painted Cube

##### Stage: 3 Challenge Level:

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

### Frogs

##### Stage: 3 Challenge Level:

How many moves does it take to swap over some red and blue frogs? Do you have a method?

### Enclosing Squares

##### Stage: 3 Challenge Level:

Can you find sets of sloping lines that enclose a square?

### Sum Equals Product

##### Stage: 3 Challenge Level:

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

### Tourism

##### Stage: 3 Challenge Level:

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

### Mini-max

##### Stage: 3 Challenge Level:

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

### Lower Bound

##### Stage: 3 Challenge Level:

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

##### Stage: 3 Challenge Level:

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

### Picturing Square Numbers

##### Stage: 3 Challenge Level:

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

### Shear Magic

##### Stage: 3 Challenge Level:

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

### All Tangled Up

##### Stage: 3 Challenge Level:

Can you tangle yourself up and reach any fraction?

### What Numbers Can We Make?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

### Partly Painted Cube

##### Stage: 4 Challenge Level:

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

### Handshakes

##### Stage: 3 Challenge Level:

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

### Steel Cables

##### Stage: 4 Challenge Level:

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

### Magic Letters

##### Stage: 3 Challenge Level:

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

### Route to Infinity

##### Stage: 3 Challenge Level:

Can you describe this route to infinity? Where will the arrows take you next?

### Steps to the Podium

##### Stage: 2 and 3 Challenge Level:

It starts quite simple but great opportunities for number discoveries and patterns!

### Keep it Simple

##### Stage: 3 Challenge Level:

Can all unit fractions be written as the sum of two unit fractions?

### Cuboid Challenge

##### Stage: 3 Challenge Level:

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

### Odd Differences

##### Stage: 4 Challenge Level:

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = nĀ² Use the diagram to show that any odd number is the difference of two squares.

### Tilted Squares

##### Stage: 3 Challenge Level:

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

### Got It

##### Stage: 2 and 3 Challenge Level:

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

### More Twisting and Turning

##### Stage: 3 Challenge Level:

It would be nice to have a strategy for disentangling any tangled ropes...

### Cubes Within Cubes Revisited

##### Stage: 3 Challenge Level:

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

### Elevenses

##### Stage: 3 Challenge Level:

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

### For Richer for Poorer

##### Stage: 3 Challenge Level:

Charlie has moved between countries and the average income of both has increased. How can this be so?