Search by Topic

Resources tagged with Generalising similar to Leonardo's Problem:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 124 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:1

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Sums of Pairs

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

problem icon

Tower of Hanoi

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

Magic Squares

Stage: 4 and 5

An account of some magic squares and their properties and and how to construct them for yourself.

problem icon

Pareq Calc

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

problem icon

Pair Products

Stage: 4 Challenge Level: Challenge Level:1

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

problem icon

Odd Differences

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

problem icon

Polycircles

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

problem icon

Pentagon

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the vertices of a pentagon given the midpoints of its sides.

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Square Pizza

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

problem icon

Areas of Parallelograms

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the area of a parallelogram defined by two vectors?

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

What's Possible?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

problem icon

Generating Triples

Stage: 4 Challenge Level: Challenge Level:1

Sets of integers like 3, 4, 5 are called Pythagorean Triples, because they could be the lengths of the sides of a right-angled triangle. Can you find any more?

problem icon

Steel Cables

Stage: 4 Challenge Level: Challenge Level:1

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

problem icon

Multiplication Arithmagons

Stage: 4 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

problem icon

One, Three, Five, Seven

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

problem icon

Where Can We Visit?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

problem icon

Consecutive Negative Numbers

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

problem icon

AP Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

problem icon

In a Spin

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What is the volume of the solid formed by rotating this right angled triangle about the hypotenuse?

problem icon

Hypotenuse Lattice Points

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Nim

Stage: 4 Challenge Level: Challenge Level:1

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Winning Lines

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Semi-square

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

Loopy

Stage: 4 Challenge Level: Challenge Level:1

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

problem icon

Attractive Tablecloths

Stage: 4 Challenge Level: Challenge Level:1

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

problem icon

Harmonic Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you see how to build a harmonic triangle? Can you work out the next two rows?

problem icon

Of All the Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

problem icon

Pinned Squares

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

problem icon

How Much Can We Spend?

Stage: 3 Challenge Level: Challenge Level:1

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

To avoid losing think of another very well known game where the patterns of play are similar.

problem icon

Plus Minus

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

problem icon

Beelines

Stage: 4 Challenge Level: Challenge Level:1

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?