Search by Topic

Resources tagged with Generalising similar to Triangles to Tetrahedra:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 125 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Frogs

Stage: 2 and 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Cunning Card Trick

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Delight your friends with this cunning trick! Can you explain how it works?

problem icon

Tower of Hanoi

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Nim-7

Stage: 1, 2 and 3 Challenge Level: Challenge Level:1

Can you work out how to win this game of Nim? Does it matter if you go first or second?

problem icon

Pentanim

Stage: 2, 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

Card Trick 2

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain how this card trick works?

problem icon

Make 37

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

problem icon

One, Three, Five, Seven

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

problem icon

Where Can We Visit?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Magic Letters

Stage: 3 Challenge Level: Challenge Level:1

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Handshakes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Steps to the Podium

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It starts quite simple but great opportunities for number discoveries and patterns!

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Enclosing Squares

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find sets of sloping lines that enclose a square?

problem icon

Converging Means

Stage: 3 Challenge Level: Challenge Level:1

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

problem icon

Multiplication Arithmagons

Stage: 4 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges of these multiplication arithmagons?

problem icon

Steel Cables

Stage: 4 Challenge Level: Challenge Level:1

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

problem icon

Mini-max

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Consecutive Negative Numbers

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

For Richer for Poorer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Charlie has moved between countries and the average income of both has increased. How can this be so?

problem icon

Masterclass Ideas: Generalising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Nim

Stage: 4 Challenge Level: Challenge Level:1

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

problem icon

Egyptian Fractions

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

problem icon

Winning Lines

Stage: 2, 3 and 4

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.