Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Delight your friends with this cunning trick! Can you explain how it works?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Find out what a "fault-free" rectangle is and try to make some of your own.

What happens when you round these numbers to the nearest whole number?

It starts quite simple but great opportunities for number discoveries and patterns!

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many centimetres of rope will I need to make another mat just like the one I have here?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

An investigation that gives you the opportunity to make and justify predictions.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .