While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many centimetres of rope will I need to make another mat just like the one I have here?

Delight your friends with this cunning trick! Can you explain how it works?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Here are two kinds of spirals for you to explore. What do you notice?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

An investigation that gives you the opportunity to make and justify predictions.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

It starts quite simple but great opportunities for number discoveries and patterns!