Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

This activity involves rounding four-digit numbers to the nearest thousand.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can all unit fractions be written as the sum of two unit fractions?

Charlie has moved between countries and the average income of both has increased. How can this be so?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

It would be nice to have a strategy for disentangling any tangled ropes...

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Can you describe this route to infinity? Where will the arrows take you next?

Delight your friends with this cunning trick! Can you explain how it works?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two intersecting mirror lines.

Explore the effect of reflecting in two parallel mirror lines.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.