It would be nice to have a strategy for disentangling any tangled ropes...

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Find out what a "fault-free" rectangle is and try to make some of your own.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Delight your friends with this cunning trick! Can you explain how it works?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you explain the strategy for winning this game with any target?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?