In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Here are two kinds of spirals for you to explore. What do you notice?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Delight your friends with this cunning trick! Can you explain how it works?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This activity involves rounding four-digit numbers to the nearest thousand.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Find out what a "fault-free" rectangle is and try to make some of your own.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?