Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Delight your friends with this cunning trick! Can you explain how it works?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Find out what a "fault-free" rectangle is and try to make some of your own.

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find the values at the vertices when you know the values on the edges?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An investigation that gives you the opportunity to make and justify predictions.

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Can you find sets of sloping lines that enclose a square?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.