Search by Topic

Resources tagged with Generalising similar to Weekly Problem 29 - 2011:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 138 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Hidden Squares

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

More Magic Potting Sheds

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

problem icon

Nim-7 for Two

Stage: 1 and 2 Challenge Level: Challenge Level:1

Nim-7 game for an adult and child. Who will be the one to take the last counter?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Nim-7

Stage: 1, 2 and 3 Challenge Level: Challenge Level:1

Can you work out how to win this game of Nim? Does it matter if you go first or second?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Got it for Two

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Got It game for an adult and child. How can you play so that you know you will always win?

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Odd Squares

Stage: 2 Challenge Level: Challenge Level:1

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Summing Consecutive Numbers

Stage: 3 Challenge Level: Challenge Level:1

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

problem icon

Pentanim

Stage: 2, 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Card Trick 2

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain how this card trick works?

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Crossings

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

problem icon

Broken Toaster

Stage: 2 Short Challenge Level: Challenge Level:1

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Fault-free Rectangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find out what a "fault-free" rectangle is and try to make some of your own.

problem icon

Triangle Pin-down

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

problem icon

Taking Steps

Stage: 2 Challenge Level: Challenge Level:1

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Make 37

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

problem icon

One, Three, Five, Seven

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Winning Lines

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

problem icon

Number Differences

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Cut it Out

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

problem icon

Snake Coils

Stage: 2 Challenge Level: Challenge Level:1

This challenge asks you to imagine a snake coiling on itself.

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Division Rules

Stage: 2 Challenge Level: Challenge Level:1

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

problem icon

Sums and Differences 2

Stage: 2 Challenge Level: Challenge Level:1

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

problem icon

Sums and Differences 1

Stage: 2 Challenge Level: Challenge Level:1

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Cunning Card Trick

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Delight your friends with this cunning trick! Can you explain how it works?