How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Here are two kinds of spirals for you to explore. What do you notice?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Delight your friends with this cunning trick! Can you explain how it works?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Got It game for an adult and child. How can you play so that you know you will always win?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.