Got It game for an adult and child. How can you play so that you know you will always win?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

An investigation that gives you the opportunity to make and justify predictions.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This activity involves rounding four-digit numbers to the nearest thousand.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you find the values at the vertices when you know the values on the edges?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Find out what a "fault-free" rectangle is and try to make some of your own.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?