This activity involves rounding four-digit numbers to the nearest thousand.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

What happens when you round these numbers to the nearest whole number?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

What happens when you round these three-digit numbers to the nearest 100?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Delight your friends with this cunning trick! Can you explain how it works?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Are these statements always true, sometimes true or never true?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Here are two kinds of spirals for you to explore. What do you notice?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How many centimetres of rope will I need to make another mat just like the one I have here?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?