In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

This activity involves rounding four-digit numbers to the nearest thousand.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Delight your friends with this cunning trick! Can you explain how it works?

What happens when you round these three-digit numbers to the nearest 100?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

An investigation that gives you the opportunity to make and justify predictions.

Got It game for an adult and child. How can you play so that you know you will always win?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Here are two kinds of spirals for you to explore. What do you notice?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?