Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Delight your friends with this cunning trick! Can you explain how it works?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

This activity involves rounding four-digit numbers to the nearest thousand.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

An investigation that gives you the opportunity to make and justify predictions.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Got It game for an adult and child. How can you play so that you know you will always win?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?