Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Delight your friends with this cunning trick! Can you explain how it works?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Nim-7 game for an adult and child. Who will be the one to take the last counter?

An AP rectangle is one whose area is numerically equal to its perimeter. If you are given the length of a side can you always find an AP rectangle with one side the given length?

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Here are two kinds of spirals for you to explore. What do you notice?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

An investigation that gives you the opportunity to make and justify predictions.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This task follows on from Build it Up and takes the ideas into three dimensions!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Can you find all the ways to get 15 at the top of this triangle of numbers?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens when you round these three-digit numbers to the nearest 100?