Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Delight your friends with this cunning trick! Can you explain how it works?

Can you find the values at the vertices when you know the values on the edges?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you work out how to win this game of Nim? Does it matter if you go first or second?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Find out what a "fault-free" rectangle is and try to make some of your own.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

This activity involves rounding four-digit numbers to the nearest thousand.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Here are two kinds of spirals for you to explore. What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Got It game for an adult and child. How can you play so that you know you will always win?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Charlie has moved between countries and the average income of both has increased. How can this be so?

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

It would be nice to have a strategy for disentangling any tangled ropes...

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.