Got It game for an adult and child. How can you play so that you know you will always win?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Find out what a "fault-free" rectangle is and try to make some of your own.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

An investigation that gives you the opportunity to make and justify predictions.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are two kinds of spirals for you to explore. What do you notice?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?