When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you describe this route to infinity? Where will the arrows take you next?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you find all the ways to get 15 at the top of this triangle of numbers?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

It would be nice to have a strategy for disentangling any tangled ropes...

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

How many moves does it take to swap over some red and blue frogs? Do you have a method?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Can you find sets of sloping lines that enclose a square?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

It starts quite simple but great opportunities for number discoveries and patterns!

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Find out what a "fault-free" rectangle is and try to make some of your own.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you explain the strategy for winning this game with any target?