Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

An investigation that gives you the opportunity to make and justify predictions.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What happens when you round these three-digit numbers to the nearest 100?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

What happens when you round these numbers to the nearest whole number?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Find out what a "fault-free" rectangle is and try to make some of your own.

This activity involves rounding four-digit numbers to the nearest thousand.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

How many centimetres of rope will I need to make another mat just like the one I have here?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Delight your friends with this cunning trick! Can you explain how it works?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?