This activity involves rounding four-digit numbers to the nearest thousand.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Here are two kinds of spirals for you to explore. What do you notice?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Delight your friends with this cunning trick! Can you explain how it works?

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Are these statements always true, sometimes true or never true?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many centimetres of rope will I need to make another mat just like the one I have here?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Find out what a "fault-free" rectangle is and try to make some of your own.

An investigation that gives you the opportunity to make and justify predictions.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can all unit fractions be written as the sum of two unit fractions?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.