In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Delight your friends with this cunning trick! Can you explain how it works?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Find out what a "fault-free" rectangle is and try to make some of your own.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Explore the effect of reflecting in two intersecting mirror lines.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How many centimetres of rope will I need to make another mat just like the one I have here?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

An investigation that gives you the opportunity to make and justify predictions.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Got It game for an adult and child. How can you play so that you know you will always win?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

What happens when you round these numbers to the nearest whole number?