Search by Topic

Resources tagged with Generalising similar to ACE, TWO, THREE...:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

Other tags that relate to ACE, TWO, THREE...
Visualising. Generalising. Mathematical reasoning & proof. Practical Activity. Video.

There are 148 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Cut it Out

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

problem icon

Polygonals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Circles, Circles

Stage: 1 and 2 Challenge Level: Challenge Level:1

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

problem icon

Cunning Card Trick

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Delight your friends with this cunning trick! Can you explain how it works?

problem icon

Lost Books

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Crossings

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

problem icon

Number Differences

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

Cuisenaire Rods

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Odd Squares

Stage: 2 Challenge Level: Challenge Level:1

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Up and Down Staircases

Stage: 2 Challenge Level: Challenge Level:1

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

problem icon

Break it Up!

Stage: 1 and 2 Challenge Level: Challenge Level:1

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Frogs

Stage: 2 and 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Shear Magic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Steps to the Podium

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It starts quite simple but great opportunities for number discoveries and patterns!

problem icon

Snake Coils

Stage: 2 Challenge Level: Challenge Level:1

This challenge asks you to imagine a snake coiling on itself.

problem icon

Magic Letters

Stage: 3 Challenge Level: Challenge Level:1

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Button-up Some More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

problem icon

Route to Infinity

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you describe this route to infinity? Where will the arrows take you next?

problem icon

Round the Four Dice

Stage: 2 Challenge Level: Challenge Level:1

This activity involves rounding four-digit numbers to the nearest thousand.

problem icon

Walking the Squares

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

problem icon

Dice Stairs

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

problem icon

Always, Sometimes or Never?

Stage: 1 and 2 Challenge Level: Challenge Level:1

Are these statements relating to odd and even numbers always true, sometimes true or never true?

problem icon

Nim-7 for Two

Stage: 1 and 2 Challenge Level: Challenge Level:1

Nim-7 game for an adult and child. Who will be the one to take the last counter?

problem icon

Roll over the Dice

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

problem icon

Three Dice

Stage: 2 Challenge Level: Challenge Level:1

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Masterclass Ideas: Generalising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

problem icon

Spirals, Spirals

Stage: 2 Challenge Level: Challenge Level:1

Here are two kinds of spirals for you to explore. What do you notice?

problem icon

For Richer for Poorer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Charlie has moved between countries and the average income of both has increased. How can this be so?

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?