Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Can you find the values at the vertices when you know the values on the edges?

Delight your friends with this cunning trick! Can you explain how it works?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find out what a "fault-free" rectangle is and try to make some of your own.

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

It starts quite simple but great opportunities for number discoveries and patterns!

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Got It game for an adult and child. How can you play so that you know you will always win?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.