In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Are these statements always true, sometimes true or never true?

This activity involves rounding four-digit numbers to the nearest thousand.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Got It game for an adult and child. How can you play so that you know you will always win?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Are these statements relating to odd and even numbers always true, sometimes true or never true?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

What happens when you round these three-digit numbers to the nearest 100?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

An investigation that gives you the opportunity to make and justify predictions.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Here are two kinds of spirals for you to explore. What do you notice?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Can you find the values at the vertices when you know the values on the edges?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?