Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Got It game for an adult and child. How can you play so that you know you will always win?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

An investigation that gives you the opportunity to make and justify predictions.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you find the values at the vertices when you know the values on the edges?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Here are two kinds of spirals for you to explore. What do you notice?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.