An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Here are two kinds of spirals for you to explore. What do you notice?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Can you describe this route to infinity? Where will the arrows take you next?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Delight your friends with this cunning trick! Can you explain how it works?

Find out what a "fault-free" rectangle is and try to make some of your own.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you find the values at the vertices when you know the values on the edges?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Got It game for an adult and child. How can you play so that you know you will always win?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.