Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

An investigation that gives you the opportunity to make and justify predictions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

It would be nice to have a strategy for disentangling any tangled ropes...

Can all unit fractions be written as the sum of two unit fractions?

This activity involves rounding four-digit numbers to the nearest thousand.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you see how to build a harmonic triangle? Can you work out the next two rows?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Got It game for an adult and child. How can you play so that you know you will always win?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

It starts quite simple but great opportunities for number discoveries and patterns!

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many centimetres of rope will I need to make another mat just like the one I have here?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.