It would be nice to have a strategy for disentangling any tangled ropes...

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Can all unit fractions be written as the sum of two unit fractions?

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Find out what a "fault-free" rectangle is and try to make some of your own.

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you find the values at the vertices when you know the values on the edges?

Got It game for an adult and child. How can you play so that you know you will always win?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Charlie has moved between countries and the average income of both has increased. How can this be so?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

It starts quite simple but great opportunities for number discoveries and patterns!